
© Dr. A.B.M. Toufique Hasan (BUET) 1L 3 T 1, Dept. of ME ME 321: Fluid Mechanics-I (Jan 2025)

ME 321: Fluid Mechanics-I
Prof. Dr. A.B.M. Toufique Hasan

Department of Mechanical Engineering 
Bangladesh University of Engineering and Technology (BUET)

Lecture - 04 (03/05/2025)
Fluid Dynamics: Streamlines & RTT

toufiquehasan.buet.ac.bd
toufiquehasan@me.buet.ac.bd



©  Dr. A.B.M. Toufique Hasan (BUET)

Flow visualization is the technical art of making flow patterns visible. 
It is a fundamental technique to describe and understand the nature of fluid flow dynamics in and 
around a flow system (both internal and external flows) and thus grossly predict its performance.
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Visualization of Fluid flows

In analytical fluid dynamics, the visualization of fluid flow is usually conducted using streamline, 
contours of different flow variables, etc. 

Experimental flow visualization technique includes dye visualization (streakline, pathline), smoke 
visualization, particle image velocimetry (PIV), particle tracking velocimetry (PTV), surface flow 
visualization (Pressure sensitive paint, etc.), Schlieren imaging, shadowgraph, laser diagnosis, Mie 
scattering, and so on. 

Karman Vortex street Vortex street from an airfoil TE CFD flow visualization
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A streamline is an imaginary line (curve) drawn through the 

flowing fluid in such a way that the tangent to it at any point 

gives the direction of the velocity at the point. Streamlines can 

not cross each other. Streamline is often used in analytical 

work in fluid dynamics.

Streamlines can be obtained analytically by integrating the 

equations defining lines tangent to the velocity field.  

For 2-D flows, the slope of the streamline must be equal to the 

tangent of the angle that velocity vector makes with x-axis.

Streamline

Flow over circular cylinder

Flow into pipe intake and flow over airfoil

streamline
u

v

dx

dy
=

If the velocity field is known as a function of x and y (and t if the 

flow is unsteady), this equation can be integrated to give the 

equation of the streamlines.
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A velocity field is given by

Problem 
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where V0 and l are constants. Determine

(i) Streamlines for this flow

(ii) Acceleration field for this flow.
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Suppose S is an arbitrary surface through which 

fluid is flowing without resistance. We need to 

determine rate of amount of fluid flows.

Fluid Flow Rate

n̂

V


V


n̂

Typically   may pass through dA (elemental 

area of S) at angle θ off the normal. Let    be 

the unit vector normal outward to dA. Then 

the amount of fluid swept through dA in time dt 

is the volume of the slanted parallelepiped:

V


n̂

( )( ) ( ) dtdAdAdtVVd nV ˆcos ==




( ) dQdA
dt

Vd
= nV ˆ



Total volume flow rate, ( ) dAVdAdQQ
S

n
SS  === nV ˆ

 dA  tonormal ofcomponent   theis V


nV

Total mass flow rate, ( ) dAVdAm
S

n
S  ==  nV ˆ




If density and velocity are constant over the surface S, a simple expression results:

AVQm  == A and V must be perpendicular

cusec (ft3/s), cumec (m3/s), m3/hr, lit/min, etc.
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In analytical fluid dynamics, there are two approaches for the solution of flow problems:

(1) Detail description of flow pattern at every point (x, y, z) in the flow field 

        – known as differential analysis (differential relations, differential equations)
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Analysis of Fluid Dynamics

Integral relations will be covered first in this course.

(2) Working with a finite region (control volume (CV)), making a balance of flow-in versus 

flow-out, and determining the gross flow effects such as the force or torque on a body 

or the total energy exchange.

  – known as integral analysis (integral relations, integral equations)
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To analyze thermo-fluid dynamic problems, also there exist two approaches:

1. System approach: A system is defined as an arbitrary quantity of fixed mass (same atoms 

of fluid particles). A system may change shape, position, and thermal conditions but must 

entail the same amount of mass. Thus the mass of the system is conserved and does not 

change(except nuclear reactions). Everything external to this system is denoted by the term 

surroundings, and the system is separated from its surroundings by its boundaries.

2. Control volume approach: This approach concerns about the fixed and definite volume 

in space (a geometric entity, independent of mass), known as control volume (CV). The 

boundary of this volume is known as control surface (CS). The amount of the matter in the 

control volume may change in time, but the shape of the control volume will remain fixed. 

System & Control Volume

System approach Control volume approach

System boundary
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Sometimes we are interested in what happen to a particular part (amount) of the fluid when it 

moves. Other times, we may be interested in what effect the fluid has on a particular object or 

volume in space as fluid interact with it. 

Thus, we need to describe the laws governing fluid motion using both system concepts 

(consider a fixed amount of mass of the fluid) and control volume concepts (consider a finite 

volume). To do this we need an analytical tool to shift from one representation to the other 

presentation. The Reynolds Transport Theorem (RTT) provides this tool.

System

RTT

Control

volume

System & Control Volume

All the laws of Mechanics are written 

for a system (i.e. conservation of 

mass, momentum and energy)

Reformulation of the 

governing equations to 

CV approach through 

RTT
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Reynolds Transport Theorem (RTT)

At time t, 

both the system and control volume (CV) are the 

same identity.

Fixed 

control 

volume 

CV

System at 

time t

Arbitrary

Fixed

Control 

surface

CS

n̂

n̂

Unit outward normal 

vector to dA

Unit outward normal 

vector to dA

dtt +

( )dAdt

dtdAVVd inininin

nV ˆ

cos

−=

=




( )dAdt

dtdAVVd outoutoutout

nV ˆ

cos

=

=




Flow in -ve

Flow out +ve

Flow

Situation at time t+dt 
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Reynolds Transport Theorem (RTT)

( )dAdt

dtdAVVd inininin

nV ˆ

cos

−=

=




( )dAdt

dtdAVVd outoutoutout

nV ˆ

cos

=

=




Flow in -ve

Flow out +ve

Situation at time t+dt 

Let B be any property of the fluid (mass, momentum, 

energy, enthalpy, etc.) and β is the intensive value of 

B (dB/dm) i.e. the amount of B per unit mass in any 

small element of the fluid.

The total amount of B in the fixed control volume 

(CV) is thus

 ==
CVCV

CV VddmB 

where

CVtheinsidevolumeelemetal

fluidofdensity

=

=

=

Vd

dm

dB




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Reynolds Transport Theorem (RTT)

( )dAdt

dtdAVVd inininin

nV ˆ

cos

−=

=




( )dAdt

dtdAVVd outoutoutout

nV ˆ

cos

=

=




Flow in -ve

Flow out +ve

Situation at time t+dt 

There are three sources of change in B relating 

to the control volume (CV):

( )CV
Vd

dt

d


1. A change within the control volume (CV):

2. Outflow of β from the control volume through 

the control surface (CS):

CS
cos outdAV 

3. Inflow of β to the control volume through the 

control surface (CS):

CS
cos indAV 

CVdB

dt
=
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Reynolds Transport Theorem (RTT)

From the Fig., it is seen that the system has 

moved a bit, gaining the outflow sliver and 

losing the inflow sliver. In the limit as dt → 0, 

the instantaneous change of B in the system 

is the sum of the change within, plus the 

outflow, minus the inflow:

( ) ( )  −+=
CSCSCV

syst coscos inout dAVdAVVd
dt

d
B

dt

d


Flux terms
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Reynolds Transport Theorem (RTT)

( )




−=

CS

CSCS

ˆ

coscostermsFlux

dA

dAVdAV inout

nV






Now, the flux terms can be combined in a single 

integral term involving       that accounts for both 

positive outflow and negative inflow:

nV ˆ


Thus the relation comes as:

( ) ( ) ( ) +=
CSCV

syst
ˆ dAVd

dt

d
B

dt

d
nV




This is the general form of the Reynolds transport theorem (RTT) for a fixed, nondeforming 

control volume. 

This relation permits to change from a system approach to control volume (CV) approach.
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Reynolds Transport Theorem (RTT)

Time rate of change 

of an arbitrary 

parameter, B of the 

system.

The parameter B may 

be mass, momentum, 

energy, or angular 

momentum etc.

Time rate of change of 

B within the control 

volume (CV) as the 

fluid flows through it.

β is the amount of B per 

unit mass.

Net flowrate of the 

parameter B across 

the entire control 

surfaces (CS).

The net flowrate across 

the entire control 

surfaces may be 

negative, zero, or 

positive depending on 

the particular situation 
involved.

Unsteady effects 
associated with the 
fact that the values of 
the parameter within 
the control volume 
may change with time.

Convective effects 
associated with the 
flow of the system 
across the fixed control 
surfaces.

Unsteady effects 
associated with the 
fact that the time 
rate of change of 
system property.

( ) ( ) ( ) +=
CSCV

syst
ˆ dAVd

dt

d
B

dt

d
nV




= +
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Recap

( ) ( ) ( ) +=
CSCV

syst
ˆ dAVd

dt

d
B

dt

d
nV




Reynolds transport theorem (RTT) for a fixed, nondeforming control volume (CV)

This relation permits to change from a system 

approach to control volume (CV) approach.
where

etc.) enthalpy, momentum, (mass, fluid ofproperty anysyst =B

basis) massunit (per  fluid ofproperty intensive=

 fluid ofdensity =

 volumeelemental=Vd

( ) flux volumeelementalˆ = dAnV


(CV)  volumecontrol over the integralvolume
CV

=
(CS) surface control over the integralsurface

CS
=

( ) ( ) ( ) +



=

CSCV
syst

ˆ dAVd
t

B
Dt

D
nV




Similar expression adopted by other books:
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Conservation of Mass

A system is defined as a fixed quantity of mass, denoted by m. Thus, the mass of the system is 

conserved and does not change except nuclear reaction . so the conservation of mass principle for a 

system is simply stated as

)(0

const.

syst

syst

i
dt

dm

m

=

=

Reynolds transport theorem (RTT) with B = mass and so, β = 1; accordingly

1
mass

mass
==

( ) ( ) ( ) +=
CSCV

syst
ˆ dAVd

dt

d
B

dt

d
nV




( ) ( ) ( ) +=
CSCV

syst
ˆ dAVd

dt

d
m

dt

d
nV




( ) ( ) 0ˆ
CSCV

=+  dAVd
dt

d
nV




Control volume expression for conservation of 

mass, commonly known as continuity equation.
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Conservation of Mass

For steady flow i.e. 

( ) 0ˆ
CSCV

=+  dAVdρ
dt

d
nV




( ) 0=
dt

d

( ) )(0ˆ
CS

iidA =  nV




= 0

The integrand in the mass flow rate integral represents the product of the component of velocity, V 

perpendicular to the small portion of the control surface and the differential area, dA. 

As shown in figure (dot product)

( ) veˆ +=nV


; +ve for flow out from the control volume

( ) veˆ −=nV


; -ve for flow in to the control volume

Equation (ii) states that in steady flow, the mass flows entering and leaving the control 

volume (CV) must balance exactly.
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Conservation of Mass

When all of the differential quantities are summed over the entire control surfaces;

( ) ( ) ( )

0

0ˆ

inout

inout
CS

=−=

−=




mm

AVAVdA




 nV

 = outin mm 
Mass continuity equation

For incompressible flows, (ρ =constant through the flow system)

 = outin QQ
volume continuity equation

( ) ( ) = outin AVAV
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